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1. Introduction

Recently I have spent some effort on a grant supported by the U.S. Army

Materials and Mechanics Research Center in studying numerically and analytically the

diffusion of agent from a sessile agent droplet (a spherical cap) through the

(polymer) membrane on which it rests. The agent droplet can be neat or polymer

thickened.1 '5 '6 Dr. Nathaniel Schneider of Natick R. D. and E. Laboratories who

has asked us to review these matters is primarily interested only in the neat agent

problem. This diffusion problem arises in assessing the definite amount of agent,

Qb' coming through a test membrane within a definite time period, tb* Its

relevance to monitoring and dosimetry is thus clear and needs no further comment.

,The numerical solutions make clear both quanlitatively and quantitatively (for

suitably chosen parameters) the overall expected behavior and the results are in

overall agreement with observations. While for the polymer thickened agent droplet

problem there is a more extensive region of scaling with regard to initial droplet

radius, RA, and membrane thickness, L, this ia not the case for the neat

1 1-3
droplet. Specifically we showed-- that simple scaling relations apply only

for a rather limited parameter ranges: a) The more ubiquitous (under field

conditions) case where the agent is deposited as an aerosol of tiny droplets which

spread on the membrane, for which R /L < the small droplet case. This case is

essentially completely analyzed in references (1) and (4) and a quasi steady state

analytical theory is given in reference (2) for the case that the agent solubility

is sufficiently large. I am given to understand by Dr. Schneider that the scaling -

and applicability of this case is sufficiently well understood that no further

comment is necessary here. (b) The more special case, we call the large droplet

case, arises when R IL >> 1. Note that the condition used for approximate

Ava 1abll1tY Codes

jAvall and/or
Speoial

C
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solution of this problem that the droplet is smaller than L cannot be correct for

all time.1 The radius of the sessile droplet decreases continuously with time and

will ultimately become equat to or smaller than L (as the agent diffuses through the

membrane) when the special scaling for the limiting ease must fail. In the next

section we review the discussion of this special limiting case. It has been

originally treated by us in reference (1) and (3). We shall treat it here more

extensively in the next section showing that it arises from a singular perturbation

of the original boundary value problem. In the last section we deal with the

extension of this problem when evaporation from the sessile droplet surface is not

negligible.

2. The large droplet case - negligible surface evaporation from the droplet.

We consider the moving boundary diffusion problem initially described in

references (1) - (4). We use a slightly modified notation. All physical entities

with dimensions, other than certain scaling variables such as Ro , L, etc. will be

written with a carat over the letter denoting the entity. We will subsequently

introduce suitably scaled, dimensionless variables denoted by letters without carats.
A A A

The concentrafion C of agent in the membrane at location r, z at time A

satisfies the diffusion boundary value problem1-4

'%A(ac/at) = D {(a2^/a^ 2) + 1/1 (a/a^) + (a2^/aA 2)1 (1)

in 0 < z < L , r > 0, t > 0

with initial and boundary conditions

0) =0, (2)

A PA
c(r, 0, t) = c0 , r < R(t) (3)

with c the solubility of agent, i.e. the equilibrium concentration of agent in a
o

membrane innersed in neat liquid agent at ambient fixed temperature and pressure and

AA
R(t) the time dependent sessile droplet radius. The sessile droplet is a spherical
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cap with fixed contact angle e and volume 1/3 f(e)R 3(t),

f(G) = vsinO(2+cose)/(l+cose)- 2 . Furthermore,
A A A A

(aclaz =0^) 0 r > R(t) (4)

and

A A
c(r, L, t) = 0. (5)

A .4A
The moving boundary of the spherical cap r = R(t) is determined by the mass balance

R(t)
pf(e)R2 (dR/dt) = 21rDd 'r (ac/d )= 0  ; R(t=0) = Ro , (6)

0
with p the density of neat agent. We now introduce dimensionless variables:

A 'A
r = r/R % z = z/L,0

A 2A
t = Dt/L , R(t) = R(t)/R 0

c(r,z,t) c r z O/

8 = 2wo/Pf(e) , (7)

and a dimensionless parameter of smallness,

c = L/R << 1,o

into this boundary value problem.

One finds

(ac/at) = ( 2c/az ) + C2 [( 2c/ar 2) + 1/r aclar)] (8)

in 0 < z < 1, r > 0, t > 0;

c(r, z, 0) = 0 , (9)

c(r,O,t) = 1 for r < R(t), (10)

(ac/az) z= = 0 for r > R(t) ; (11)

c(r,l,t) = 0 (12)

and



RMt
R2 (dR/dt) 8 dr r (ac/az)zo ,(13)

0
R(0) M 1.

The natural way to seek an approximate solution of (8) - (13) is to consider the

singular perturbation in which the zeroth order solution for the concentration

c= C 0(z,t) satisfies (8) with neglect of the term in the square bracket on the

r.h.s. of (8), i.e.

c = C 0(z,t) + 0(c) (14)

where

2 2acl/at a cIZ , 0< z<1 ,t> 0;

co(z,0) 0 (15)

CO(0,t) 1

c (1,t) =0;

and using (14) in (13)

dR /dt =0 ,o= 1 ,(16)

Ro=1
(dRl/dt) = 81 dr r (8c0/az)0 = 8/2 (acoldz)0  (17)

0

RIM0 = 0

The zeroth order solution of the boundary value problem (cf. (14) and (15)) has been

given by us in reference (1) and also in reference (3) where it is given by the

special case described by Eq. [7] on p. 284 which in our notation reads:

CO

c0(z,t) = Z {erfc (2n + z/2 t) - erfc E(2(n+l)-z/2 r)]) (18)
n-1

t
RMt - 1 + (cBi/2) I dt' [(8c0 (z,t')/dz)] z , (19)

0
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The integrals given above are tabulated in standard tables.

To obtain a perturbation solution which holds for longer times one must

introduce "stretched" coordinates, and find the "inner" and "outer" solution of this

singular perturbation. We shall not carry out this rather dull but lengthy standard

problem in applied mathematics.

Instead we point out that the zeroth order solution provides a limiting case,

valid for very short times, when we further can replace the infinite series in (18)

by its leading term for which

(8o/aZ)z=O- -[(t)- 1 / 2 (1 + 2e-1/t)] (20)

Substituting this into (17) yields

R (t) = -B[(t/v) 
1 2 + {2(t/) 12e- l1 t

2 erfc (/ Am)}) (21)

or

R(t) - 1- cB[(tlr)1/2 + {2 (t/)l/2e-lt - 2 erfc(l/lt)).

In zeroth approximation the flux through themembrane at z = 1, (which in this

approximation is exactly the same as the area averaged flux over the membrane) can

be obtained from (18). We shall again only retain the leading order term in the

summation (18) to calculate the zeroth order flux, which we write in dimensional

form,

A/ A A
(t)- (aco/az)=L

ZO 2c (D/lt) c (22)0

The absence of R in (22) clearly shows that (22) can only apply for short0

enough times even if c < < 1. The use of (22) to calculate the reduced,

A 2
dimensionless break through time, tb D/L , requires that

A 2
t bD/L < TL (23a)
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where TL is the time needed for the droplet radius to decrease by L, i.e.

R(TL ) = 1-c. In zeroth order approximation the time TL is defined by the

solution of the transcendental equation

B (TL /)1/2 + {2( Ll /i 2 e 1 /  -2 erfc(l/ jL)

= 1. (23b)

The special scaling in (22) also noted by Angelopoulos, Schneider and Meldon

subsequently to us, in an unpublished report applies only well for sufficiently

short times, even for R 0/L > 1.

3. The zeroth order solution of the large droplet case for non-negligible

evaporation.

As shown in reference (4) if evaporation is not negligible (4) has to be

AA A A A A A A
replaced by (c/z)A= + h [c(r,O,t)-U] = 0 , r > R(t) (24)

and (b) by

A A
R(t)pff)2( AldA) 2,D A (25)

R dR/dt = 2vDcaz)= 0  (25)
0

-R2f (e)yp

A
with h the evaporation coefficient characterizing the flat polymer-vapor interface,

AA
U the equilibrium concentration of agent in the vapor above the polymer, Y the

(per unit surface area) evaporation coefficient of agent from a neat agent surface

at ambient conditions. In the zeroth order approximation we neglect all diffusion

> AA
for r > R(t) so that the solution c0 (z,t) is unaffected by (24) and is still given

by (18). Denoting by y the appropriately scaled, dimensionless Y defined by

y = Ly/D (26)



we can write the dimensionless equation (25) as

R
R2 (dR/dt) - c{Bfdr r (8c/8z)zo -yR2 1 (27)

0

From (27) and (14), ROMt = 1, but

1
(dRl/dt) = B1 dr r (8co/az)z.o -2yRI (28)

0

with Rl(O) = 0. The solution of (28) is5

t
RI(t) - Oldt' e-2y(t-t') (8c0 (r,z,t')/8z)z... (29)

0

which can be evaluated easily for short times using (20), the resulting integrals

are all tabulated
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